已读41%

TWO COGNITIVE FUNCTIONS MACHINES STILL LACK

STANISLAS DEHAENE

Cognitive neuroscientist, Collège de France, Paris; author, Consciousness and the Brain

When Turing invented the theoretical device that became the computer, he confessed that he was attempting to copy “a man in the process of computing a real number,” as he wrote in his seminal 1936 paper.8 In 2015, studying the human brain is still our best source of ideas about thinking machines. Cognitive scientists have discovered two functions that, I argue, are essential to genuine thinking as we know it, and that have—so far—escaped programmers’ sagacity.

1.  A global workspace: Current programming is inherently modular. Each piece of software operates as an independent “app,” stuffed with its own specialized knowledge. Such modularity allows for efficient parallelism, and the brain, too, is highly modular, but it’s also able to share information. Whatever we see, hear, know, or remember doesn’t remain stuck within a specialized brain circuit. Rather, the mammalian brain incorporates a long-distance information-sharing system that breaks the modularity of brain areas and allows them to broadcast information globally. This global workspace is what allows us, for instance, to attend to any piece of information on our retinas—say, a written letter—and bring it to our awareness so that we can use it in our decisions, actions, or speech programs. Think of a new type of clipboard that would allow any two programs to transiently share their inner knowledge in a user-independent manner. We’ll call a machine intelligent when it not only knows how to do things but knows that it knows them—i.e., makes use of its knowledge in novel flexible ways, outside of the software that originally extracted that knowledge. An operating system so modular that it can pinpoint your location on a map in one window, but cannot use it to enter your address in the tax return software in another window, is missing a global workspace.
2.  Theory of Mind: Cognitive scientists have discovered a second set of brain circuits dedicated to the representation of other minds—what other people think, know, or believe. Unless we suffer from a disease called autism, all of us constantly pay attention to others and adapt our behavior to their state of knowledge—or, rather, to what we think they know. Such Theory of Mind is the second crucial ingredient that current software lacks: an ability to attend to its user. Future software should incorporate a model of its user. Can she properly see my display, or do I need to enlarge the characters? Do I have any evidence that my message was understood and heeded? Even a minimal simulation of the user would immediately give a strong impression that the machine is “thinking.” This is because having a Theory of Mind is required to achieve relevance (a concept first modeled by cognitive scientist Dan Sperber). Unlike present-day computers, humans don’t say utterly irrelevant things, because they pay attention to how their interlocutors will be affected by what they say. The navigator software that tells you, “At the next roundabout, take the second exit” sounds stupid, because it doesn’t know that “Go straight” would be a much more compact and relevant message.

Global workspace and Theory of Mind are two essential functions that even a one-year-old child possesses yet our machines still lack. Interestingly, these two functions have something in common: Many cognitive scientists consider them the key components of human consciousness. The global workspace provides us with Consciousness 1.0—the sort of sentience all mammals have, which allows them to “know what they know” and therefore use information flexibly to guide their decisions. Theory of Mind is a more exclusively human function, which provides us with Consciousness 2.0—a sense of what we know in comparison with what other people know, and an ability to simulate other people’s thoughts, including what they think about us, therefore providing us with a new sense of who we are.

I predict that once a machine pays attention to what it knows and what the user knows, we’ll immediately call it a thinking machine, because it will closely approximate what we do.

There’s huge room here for improvement in the software industry. Future operating systems will have to be rethought in order to accommodate such new capacities as sharing data across apps, simulating the user’s state of mind, and controlling the display according to its relevance to the user’s inferred goals.

 
82
 
 
分享 | 摘抄 | 搜索 | 字典
Twitter Facebook 新浪微博 豆瓣
关闭 上一页 下一页
上一页下一页
分享到Twitter 分享到Facebook 添加到Pinboard 添加到Diigo 分享到新浪微博 分享到微信 推荐到豆瓣 通过邮件发送